Definice eukaryot a struktura eukaryotické buňky; předek eukaryot (LECA) a jeho vlastnosti; datování hlavních událostí v eukaryogenezi; evoluční vztahy eukaryot s prokaryoty; horizontální genový přenos; vznik a původ eukaryotického jádra a endomembránového systému; vznik a původ mitochondrií a plastidů; bičíkový aparát.
\r\n2) Systém eukaryot, Excavata
Definice a představení protist; historický vývoj pohledu na protisty; charakter taxonomických znaků; základní metody zkoumání; počet druhů protist; definice skupiny Excavata a její základní členění; exkavátní hypotéza; LECA jako exkavátní taxon(?); paraziti uvnitř exkavát; anaerobní exkaváti a ztráta mitochondrie; plastid krásnooček a jeho původ; nepoznaná diverzita diplonemidů; role krásnooček v ekosystémech.
3) Opisthokonta, Amoebozoa
Jak se liší měňavka a bičíkovec, typy panožek; superskupina Amoebozoa, její členění a význam; paraziti u amoebozoí; hlenky; superskupina Opisthokonta, její fylogenetické postavení, charakteristika, význam a základní členění; Opisthokonta jako království mnohobuněčných skupin.
4) Úvod do SAR
Superskupina SAR, její fylogenetické postavení, charakteristika a význam. V této přednášce bude kladen důraz na heterotrofní zástupce SAR (např. dírkonošci, mřížovci, nálevníci, oomycety, výtrusovci, opalinky); krátce budou zmíněny i heterotrofní skupiny relativně blízce příbuzné SAR - např. telonemidi; slunivky (Heliozoa) jako polyfyletická skupina protist, které sdílí podobnou morfologii díky konvergencím.
5) SAR, důraz kladen na fototrofní zástupce SAR
\r\nAlveolata – Dinophyta (obrněnky): parazitické obrněnky, vznik červeného přílivu (red tide), hromadění toxinů v potravním řetězci, bioluminiscence, symbiózy obrněnek - korálové útesy; Rhizaria - Paulinella: nezávislá primární endosymbióza, Chlorarachniophyta: jedinečnost rodu Chlorarachnion, nukleomorf; fototrofní Stramenopila – Chrysofyta (Chrysophyceae): křemičité schránky a cysty, využití v paleoekologii. Dictyochophyceae: křemičité kostry, diagnostika chladnějších období v minulosti. Phaeophyceae - chaluhy: chaluhové lesy (kelp forests) - centrum biodiverzity, pelagický ekosystém Sargasového moře, fykokoloidy z chaluh (algináty).
\r\n6) Fototrofní Stramenopila, Haptista, Cryptista
\r\nStramenopila –Xanthophyceae - různobrvky: organismy se složitými životními cykly. Eustigmatophyceae: mořští a sladkovodní zástupci, zdroj eikosapentenove kyseliny, Bacillariophyceae - rozsivky: stavba frustuly, bioindikační význam rozsivek, invazní druhy: Didymosphenia geminata (Didymo). Haptista - Haptophyta: kokolitky a jejich vliv na globální cyklus uhlíku a síry na Zemi; Cryptista - Cryptophyta - skrytěnky: nukleomorf
\r\n7) Sinice + Archaeplastida (Glaucophyta, Rhodophyta)
\r\nSinice (Cyanobacteria) – prokaryota, která dala vznik primárnímu plastidu: stavba fototrofní prokaryontní buňky, morfologie, diverzita, ekologický význam sinic, fixace vzdušného dusíku, stromatolity, horizontální přenos genů, symbiotické interakce cyanobakterií, sukcese vodního květu, cyanotoxiny. Archaeplastida - základní charakteristika jednotlivých vývojových linií. Glaucophyta: nejmenší a nejpůvodnější rostlinná větev. Rhodophyta (ruduchy): ruduchy korálových útesů, sladkovodní ruduchy a jejich ekologie a rozmnožování - chantransiové stádium, Porphyra - popsání životního cyklu, fykokoloidy ruduch (agar, karagen).
\r\n8) Archaeplastida (Chloroplastida)
\r\nChloroplastida: základní charakteristika jednotlivých vývojových linií (streptofytní a chlorofytní linie); Chlorofytní linie: Palmophylophyceae – hlubokomořská skupina řas; prasinofyta: polyfyletická skupina, Ostreococcus - eukaryontní organismus s nejmenším genomem, pikoplanktonní společenstva oceánů, symbiotické interakce (např. Tetraselmis/ Symsagittifera). Ulvophyceae - převážně mořská třída řas, Halimeda - tropické a subtropické ekosystémy, biogenní vznik písku. Invazní druh Caulerpa taxifolia - killer alga, Trentepohliales - řasy jako parazité. Trebouxiophyceae - Trebouxia - nejhojnější fotobiont lišejníků, Chlorella - biotechnologicky významný organismus, vývojový paralelismus.
\r\n9) Archaeplastida (Chloroplastida) – pokračování
\r\n– Chlorofytní linie Chlorophyceae: Dunaliella - život v hypersalinním prostředí, fenotypová plasticita řas. Streptofytní linie: charakteristika jednotlivých tříd - stavba buněk, rozmnožování a vývojové cykly; výskyt a význam. Zygnematophyceae (spájivky), konjugace, Desmidiales (krásivky). Charophyceae (chary): obrovské buňky, proudění cytoplasmy, kalcifikace - travertiny, gyrogonity. Původ cévnatých rostlin.
\r\n10) Pohyb, evoluce mnohobuněčnosti
Typy pohybu u protist; typy mnohobuněčnosti; mnohobuněčnost mnohokrát jinak - společné vlastnosti a rozdíly mnohobuněčných linií ilustrované na příkladu améby rodu Dictyostelium, řasy rodu Volvox (váleč), myxogastridní hlenky a u organismů s komplexními těly - rostliny, živočichové a houby
11) Mechorosty
\r\nMechorosty: Mechorosty jako skupina organismů, vývoj skupiny, pofylitičnost/monofyletičnost, názory na evoluci, hlavní znaky a odlišnosti od ostatních autotrofů. Anthocerotophyta (hlevíky): charakteristika (společné znaky s oběma dalšími odděleními, jedinečné znaky), ekologie a zástupci. Marchantiophyta - játrovky: charakteristika (redukované protonema, frondózní a foliózní typy, amfigastrie, stavba sporofytu - elatery apod.), systém a zástupci.
\r\n12) Bryofyta, lišejníky - úvod
\r\nBryophyta (mechy): charakteristika (vodivé systémy, stavba sporofytu a gametofytu, vegetativní rozmnožování), systém a zástupci, využití mechorostů. Lišejníky jako skupina, komplexní složené organismy - mykobiont (houba) a fotobiont (řasa, sinice), princip soužití, morfologie, anatomie, rozmnožování.komplexní složené organismy - mykobiont (houba) a fotobiont (řasa, sinice), princip soužití, morfologie, ekologie a příklady symbiózy mykobiontů a fotobiontů, biogeografie a bioindikační význam lišejníků, pionýrské organismy, základní charakteristika vybraných druhů, jejich ekologie a rozmnožování.
\r\n13) Lišejníky
\r\nLišejníky - ekologie a příklady symbiózy mykobiontů a fotobiontů, biogeografie a bioindikační význam lišejníků, pionýrské organismy, základní charakteristika vybraných druhů, využití lišejníků.
\r\n","inLanguage":"cs"}]}
1) Eukaryotická buňka a její vznik (eukaryogeneze) Definice eukaryot a struktura eukaryotické buňky; předek eukaryot (LECA) a jeho vlastnosti; datování hlavních událostí v eukaryogenezi; evoluční vztahy eukaryot s prokaryoty; horizontální genový přenos; vznik a původ eukaryotického jádra a endomembránového systému; vznik a původ mitochondrií a plastidů; bičíkový aparát.
2) Systém eukaryot, Excavata Definice a představení protist; historický vývoj pohledu na protisty; charakter taxonomických znaků; základní metody zkoumání; počet druhů protist; definice skupiny Excavata a její základní členění; exkavátní hypotéza; LECA jako exkavátní taxon(?); paraziti uvnitř exkavát; anaerobní exkaváti a ztráta mitochondrie; plastid krásnooček a jeho původ; nepoznaná diverzita diplonemidů; role krásnooček v ekosystémech.
3) Opisthokonta, Amoebozoa Jak se liší měňavka a bičíkovec, typy panožek; superskupina Amoebozoa, její členění a význam; paraziti u amoebozoí; hlenky; superskupina Opisthokonta, její fylogenetické postavení, charakteristika, význam a základní členění; Opisthokonta jako království mnohobuněčných skupin.
4) Úvod do SAR Superskupina SAR, její fylogenetické postavení, charakteristika a význam. V této přednášce bude kladen důraz na heterotrofní zástupce SAR (např. dírkonošci, mřížovci, nálevníci, oomycety, výtrusovci, opalinky); krátce budou zmíněny i heterotrofní skupiny relativně blízce příbuzné SAR - např. telonemidi; slunivky (Heliozoa) jako polyfyletická skupina protist, které sdílí podobnou morfologii díky konvergencím.
5) SAR, důraz kladen na fototrofní zástupce SAR Alveolata – Dinophyta (obrněnky): parazitické obrněnky, vznik červeného přílivu (red tide), hromadění toxinů v potravním řetězci, bioluminiscence, symbiózy obrněnek - korálové útesy; Rhizaria - Paulinella: nezávislá primární endosymbióza, Chlorarachniophyta: jedinečnost rodu Chlorarachnion, nukleomorf; fototrofní Stramenopila – Chrysofyta (Chrysophyceae): křemičité schránky a cysty, využití v paleoekologii. Dictyochophyceae: křemičité kostry, diagnostika chladnějších období v minulosti. Phaeophyceae - chaluhy: chaluhové lesy (kelp forests) - centrum biodiverzity, pelagický ekosystém Sargasového moře, fykokoloidy z chaluh (algináty).
6) Fototrofní Stramenopila, Haptista, Cryptista Stramenopila –Xanthophyceae - různobrvky: organismy se složitými životními cykly. Eustigmatophyceae: mořští a sladkovodní zástupci, zdroj eikosapentenove kyseliny, Bacillariophyceae - rozsivky: stavba frustuly, bioindikační význam rozsivek, invazní druhy: Didymosphenia geminata (Didymo). Haptista - Haptophyta: kokolitky a jejich vliv na globální cyklus uhlíku a síry na Zemi; Cryptista - Cryptophyta - skrytěnky: nukleomorf
7) Sinice + Archaeplastida (Glaucophyta, Rhodophyta) Sinice (Cyanobacteria) – prokaryota, která dala vznik primárnímu plastidu: stavba fototrofní prokaryontní buňky, morfologie, diverzita, ekologický význam sinic, fixace vzdušného dusíku, stromatolity, horizontální přenos genů, symbiotické interakce cyanobakterií, sukcese vodního květu, cyanotoxiny. Archaeplastida - základní charakteristika jednotlivých vývojových linií. Glaucophyta: nejmenší a nejpůvodnější rostlinná větev. Rhodophyta (ruduchy): ruduchy korálových útesů, sladkovodní ruduchy a jejich ekologie a rozmnožování - chantransiové stádium, Porphyra - popsání životního cyklu, fykokoloidy ruduch (agar, karagen).
8) Archaeplastida (Chloroplastida) Chloroplastida: základní charakteristika jednotlivých vývojových linií (streptofytní a chlorofytní linie); Chlorofytní linie: Palmophylophyceae – hlubokomořská skupina řas; prasinofyta: polyfyletická skupina, Ostreococcus - eukaryontní organismus s nejmenším genomem, pikoplanktonní společenstva oceánů, symbiotické interakce (např. Tetraselmis/ Symsagittifera). Ulvophyceae - převážně mořská třída řas, Halimeda - tropické a subtropické ekosystémy, biogenní vznik písku. Invazní druh Caulerpa taxifolia - killer alga, Trentepohliales - řasy jako parazité. Trebouxiophyceae - Trebouxia - nejhojnější fotobiont lišejníků, Chlorella - biotechnologicky významný organismus, vývojový paralelismus.
9) Archaeplastida (Chloroplastida) – pokračování – Chlorofytní linie Chlorophyceae: Dunaliella - život v hypersalinním prostředí, fenotypová plasticita řas. Streptofytní linie: charakteristika jednotlivých tříd - stavba buněk, rozmnožování a vývojové cykly; výskyt a význam. Zygnematophyceae (spájivky), konjugace, Desmidiales (krásivky). Charophyceae (chary): obrovské buňky, proudění cytoplasmy, kalcifikace - travertiny, gyrogonity. Původ cévnatých rostlin.
10) Pohyb, evoluce mnohobuněčnosti Typy pohybu u protist; typy mnohobuněčnosti; mnohobuněčnost mnohokrát jinak - společné vlastnosti a rozdíly mnohobuněčných linií ilustrované na příkladu améby rodu Dictyostelium, řasy rodu Volvox (váleč), myxogastridní hlenky a u organismů s komplexními těly - rostliny, živočichové a houby
11) Mechorosty Mechorosty: Mechorosty jako skupina organismů, vývoj skupiny, pofylitičnost/monofyletičnost, názory na evoluci, hlavní znaky a odlišnosti od ostatních autotrofů. Anthocerotophyta (hlevíky): charakteristika (společné znaky s oběma dalšími odděleními, jedinečné znaky), ekologie a zástupci. Marchantiophyta - játrovky: charakteristika (redukované protonema, frondózní a foliózní typy, amfigastrie, stavba sporofytu - elatery apod.), systém a zástupci.
12) Bryofyta, lišejníky - úvod Bryophyta (mechy): charakteristika (vodivé systémy, stavba sporofytu a gametofytu, vegetativní rozmnožování), systém a zástupci, využití mechorostů. Lišejníky jako skupina, komplexní složené organismy - mykobiont (houba) a fotobiont (řasa, sinice), princip soužití, morfologie, anatomie, rozmnožování.komplexní složené organismy - mykobiont (houba) a fotobiont (řasa, sinice), princip soužití, morfologie, ekologie a příklady symbiózy mykobiontů a fotobiontů, biogeografie a bioindikační význam lišejníků, pionýrské organismy, základní charakteristika vybraných druhů, jejich ekologie a rozmnožování.
13) Lišejníky Lišejníky - ekologie a příklady symbiózy mykobiontů a fotobiontů, biogeografie a bioindikační význam lišejníků, pionýrské organismy, základní charakteristika vybraných druhů, využití lišejníků.
Cílem přednášky je podat ucelenou představu o diverzitě jednobuněčných fototrofních a heterotrofních eukaryot (protist) a organismů označovaných tradičně jako „bezcévné rostliny“ včetně prokaryontních sinic a lišejníků. Tyto organismy fungují v ekosystému jako primární producenti. Důraz je kladen na endosymbiotický vznik eukaryotické buňky, na jednotlivé linie jednobuněčných eukaryot, jejich fylogenetické vztahy a na jejich vztahy s jinými organismy (symbióza, parasitismus).
Zaměříme se na to, kde jednotlivé organismy v přírodě žijí, jak ovlivňují své prostředí (některé mořské organismy mají významný vliv na globální ekosystém). Seznámíme se s morfologií a životními cykly "vlajkových" druhů a zmíníme druhy významné pro člověka (sinice vodních květů x biotechnologicky zajímavé organismy).