Ab initio výpočet integrálů v bázi kartézských gaussovských funkcí mp
Normal mp 2 0 2003-02-07T14:10:00Z 2003-02-07T14:30:00Z 1 95 544 gfhghgg 4 1 668 9.3821 21
/* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal
{mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman";} h1
{mso-style-next:Normální; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; page-break-after:avoid; mso-outline-level:1; font-size:12.0pt; font-family:"Times New Roman"; mso-font-kerning:0pt;}
@page Section1
{size:595.3pt 841.9pt; margin:70.85pt 70.85pt 70.85pt 70.85pt; mso-header-margin:35.4pt; mso-footer-margin:35.4pt; mso-paper-source:0;} div.Section1
{page:Section1;}
-->
Ab initio computation of integrals in the cartesian gaussian basis
Segmented and general contraction of the GTO basis
One-electron integrals
Two-electron repulsion integrals
Numerical integration in the density functional methods
Self consistent field method
Processing of large integral files, ''integral driven loops'' technique
PK method, use of symmetry, direct SCF, ''linear scaling'' methods
Convergence acceleration methods: DIIS, level shift, damping
High performance computing
Optimization of vector and matrix operations for RISC processors, BLAS and LAPACK libraries
Parallelization of programs, SIMD -- MIMD, SMP a message passing
This lecture and exercises are intended for the students, who are more deeply interested in quantum chemical theory and would like gain knowledge about the implementation of quantum chemical methods. This course is confined to Hartree-Fock theory, but goes in enough depth to give the student all tools necessary for writing her own implementation of this method, which actually should be done in the exercises.