Charles Explorer logo
🇬🇧

Numerical and algorithmical methods in quantum chemistry

Class at Faculty of Science |
MC260P62

Syllabus

Ab initio výpočet integrálů v bázi kartézských gaussovských funkcí mp

Normal mp 2 0 2003-02-07T14:10:00Z 2003-02-07T14:30:00Z 1 95 544 gfhghgg 4 1 668 9.3821 21

/* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal

{mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman";} h1

{mso-style-next:Normální; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; page-break-after:avoid; mso-outline-level:1; font-size:12.0pt; font-family:"Times New Roman"; mso-font-kerning:0pt;}

@page Section1

{size:595.3pt 841.9pt; margin:70.85pt 70.85pt 70.85pt 70.85pt; mso-header-margin:35.4pt; mso-footer-margin:35.4pt; mso-paper-source:0;} div.Section1

{page:Section1;}

-->

Ab initio computation of integrals in the cartesian gaussian basis

 

            Segmented and general contraction of the GTO basis

            One-electron integrals

            Two-electron repulsion integrals

            Numerical integration in the density functional methods

 

Self consistent field method

 

            Processing of large integral files, ''integral driven loops'' technique

            PK method, use of symmetry, direct SCF, ''linear scaling'' methods

            Convergence acceleration methods: DIIS, level shift, damping

 

High performance computing

 

            Optimization of vector and matrix operations for RISC processors, BLAS and LAPACK libraries

            Parallelization of programs, SIMD -- MIMD, SMP a message passing

 

Annotation

This lecture and exercises are intended for the students, who are more deeply interested in quantum chemical theory and would like gain knowledge about the implementation of quantum chemical methods. This course is confined to Hartree-Fock theory, but goes in enough depth to give the student all tools necessary for writing her own implementation of this method, which actually should be done in the exercises.