1. Bond theory hybridization, molecular orbital theory, resonance, Broensted and Lewis acid-base theory
2. Alkanes (physical and chemical properties, abundance, stereochemistry, cycloalkanes conformation)
3. Types of organic reactions (ionic and radical reaction), equilibrium (Gibbs energy etc.), bond dissociation energy, energetic diagrams), kinetics (activation energy)
4. Alkenes (physical and chemical properties, stereochemistry, stability, reactions of alkenes (addition reactions of hydrogen halides, halogens, hydratation, hydroboration, carbene addition - Simmons-Smith rxn, hydrogenation, hydroxylation, alkene cleavage, radical reactions, chain reactions. Alkynes, physical and chemical properties, preparation, reactions of alkynes - addition, reduction, cleavage, acido-basic reactions, alkylation of alkynes)
5. Stereochemistry, chirality, symmetry elements, optical activity, R-S nomenclature, enantiomers, diastereomers, meso form.
6. Halogenoalkanes (physical and chemical properties, preparation, Hammond postulate, allylic halogenation, reactions of halogenoalkanes (Grignard and similar organometallic compounds). Oxidation a reduction in organic chemistry. Nucleophilic substitution (SN1 a SN2 mechanism, steric effect, nucleophilicity, effect of solvents, etc.). Eliminations (mechanism E1 and E2).
7. Dienes (physical and chemical properties, preparation, stability, electrophilic addition, kinetically and thermodynamically driven rxns, Diels-alder reaction, conjugation and colors - principle of a vision. Benzene and other aromatic compounds, structure and stability, orbital model, aromaticity, aromatic ions, aromatic heterocycles.
8. Chemistry of the aromatic compounds (electrophilic aromatic substitution - halogenation, nitration, sulfonation, Fridel-Crafts reaction - alkylation, acylation), substitution effects (inductive a mesomeric effect), nucleophilic aromatic substitution, benzyne, reaction on side chain of aromatic compounds (halogenation, hydrogenation, oxidation, etc.), selective synthesis of trisubstituted aromatic compounds.
9. Alcohols and phenols (physical properties, acidity and basicity, preparation of alcohols (reduction oc carbonyl compounds, hydratation a oxidation alkenes, use of organometallic compounds, etc.), reactions of alcohols (dehydratation, substitution, etc.), oxidation of alcohols (Swern, Jones, Dess-Martin oxidation), protection of alcohols. Phenols and their reactions (substitution, oxidation, etc.).
10. Ethers, thiols, sulfides (physical and chemical properties. Structure of ethers, preparation (addition of alcohols on alkenes, Williamson synthesis, alkoxymercuration of alkenes), reaction of ethers (cleavage, Claisen rearrangement). Cyclic ethers, epoxides preparation and reactions (acidic and basic opening), crown-ethers. Thiols, sulfides, preparation and reactions.
The aim of the course is to provide students with the basic knowledge of organic chemistry. Basic principles as well as reactivity of selected organic compounds (including alkanes, alkenes, alkynes, aromatic compounds, alcohols, phenols, ethers, thiols, and sulfides) will be discussed.