1. Předzpracování dat.
2. Jak porovnávat algoritmy učení.
3. Metody učení s učitelem: klasifikace (rozhodovací stromy, Bayesovké klasifikátory, logistická regrese, diskriminační analýza, metoda nejbližších sousedů, Support vector machines, neuronově sítě, kombinování klasifikátorů - boosting) a její aplikace v genomice, proteomice a systémové biologii.
4. Metody učení bez učitele: shluková analýza (klastrování dělením, k-means, hierarchické klastrování, validace klastrování) a jeji aplikace v bioinformatice.
5. Pravděpodobnostní grafické modely (Bayesovské sítě, Gaussovské sítě) a jejich aplikace (v genomice a systémové biologii).
6. Optimalizace a její aplikace v bioinformatice. Přednáška je doplněná cvičením, kde se budou metody z přednášky aplikovat na umělá ale i na reálná biologická data. Při implementaci se bude používat především interaktivní programovací jazyk Python s knihovnami pro strojové učení a práci s biologickými daty.
Tradiční informatické postupy a algoritmy selhávají při řešení složitých biologických problémů. Při zpracování ohromného množství biologických dat se však dají využít metody strojového učení.
Cílem přednášky je p ředstavit několik oblastí využití strojového učení při zpracování biologických dat. Přednáška předpokládá znalost základů bioinformatiky, které lze získat z přednášky Bioinformatické algoritmy NTIN084, nebo z podobných přednášek na jiných školách.