Charles Explorer logo
🇬🇧

Astrophysics for Physicists

Class at Faculty of Mathematics and Physics |
NAST023

Syllabus

1. What is the time on sundials?

Time in astronomy - universal time, sidereal time, true local and mean solar time, equation of time, Julian date; definitions and cardinal directions and planes of coordinate systems (azimuthal, equatorial, ecliptic, galactic, geographic). 2. How to construct a planisphere?

Coordinate transformations, rotation in 2D, rotation matrices, spherical triangle, units of angles and distances. 3. Why planets orbit on ellipses?

Kepler laws, Newton laws of motion and gravity law, two-body problem solution, orbital elements. 4. Where is asteroid (4) Vesta on the sky?

Databases of orbits (MPC, AstOrb) and calculation of ephemerides (Horizons). 5. What forces act on small bodies?

Gravitational perturbations by planets, resonances, Yarkovsky/YORP effect (an order of magnitude estimate), ... 6. How far are objects we see on the sky?

Distance determination in the Universe. Moon eclipse, parallax, transits of Mercury and Venus, Cepheids, ... 7. Why the Sun shines?

Observer phenomena on the Sun, structure of the Sun, thermonuclear reactions. 8. When and how planets were formed?

Determination of ages in general, radiometric method, gravitational collapse, protoplanetary disk, planetesimals and embryos. 9. What asteroids tell us?

Distribution of asteroids in the Solar System, Kirkwood gaps, a new scenario of planetary system evolution. 10. What can we read in stellar radiation?

Spectroscopy, a spectrum of a progressively denser and hotter gas cloud, physical characteristics of stars, extrasolar planets. 11. How to use telescope and a CCD camera?

Optical instruments, photometry and photometric quantities, brightness measurement of an eclipsing binary and its interpretation. 12. How do stars evolve?

Hertzsprung-Russel diagram, equations of stellar structure, internal structure of stars, novae and supernovae. 13. Why there is dark during the night?

Kepler-Olbers paradox, Big Bang, nucleosynthesis in early universe, dark matter and dark energy, black hole in the centre of our Galaxy.

Annotation

Basic information on different topics of astrophysics - solar system physics, internal constitution and evolution of stars and on galaxies and on structure and evolution of the Universe. Recent "hot" and open problems in investigation of the Universe will be included, together with some excercises in practical astronomy.

No previous knowledge of astrophysics is assumed. The course is convenient for BSc students and for those MSc students who have major fields other than astrophysics but would like to get some fundamentals of it.