Charles Explorer logo
🇬🇧

Experiment Automation I

Class at Faculty of Mathematics and Physics |
NEVF127

Syllabus

*

1. Introduction to data acquisition and control of physical experiments Deterministic and random signals and their characteristics. Simplified block diagram of computer controlled experiment. Conversion of nonelectrical quantities to/from electrical signals (sensors and actuators - examples). Signal conditioning and shaping. Grounded and floating signal sources, differential, ground referenced and non-referenced single-ended measurement systems. Signal sampling and quantification, frequency spectrum, Nyquist criterion. *

2. Analog filters Overview of analog filtering - advantages and drawbacks. RC and LC filters, active filters. Applications of filters to signal processing. *

3. Digital-analog and analog-digital conversion Analog switch and multiplexer, sample and hold circuit. Methods of D/A conversion - resistor networks and current sources, indirect conversion using PWM. Integration A/D methods - single and double integrations. Advanced A/D conversion methods - successive approximation, parallel and sigma-delta converters. Parameters and errors of D/A and A/D conversions. *

4. Digital number representations and operations Boolean algebra, basic logical operations, parity. Logical function and its equivalent notations. Binary system, integer and floating-point number representations, basics of arithmetic operations. *

5. Logical circuits Combinative and sequential logic. Overview of basic logical circuits. Logical gates, synchronous and asynchronous flip-flop circuits, delay elements, monostable and astable flip-flop circuits. Multiplexers, decoders, arithmetic circuits, comparators, parity generator. Serial and parallel shift registers, counters, memory cells. Tri-state logic, open drain circuits (wired-or logical elements), buffers, link transmitters and receivers. Synchronous and asynchronous bus, handshake protocol, differential and single-ended signal transfer, current loop. *

6. Basic properties of digital integrated circuits Absolute maximum ratings, static and dynamic characteristics. Logical levels, noise tolerance, input, output and transfer characteristics, input/output load, rise and fall times, delay, lead and hold times. *

7. Tutorial of microprocessor technology Basic design and function. Von Neuman and harward architecture. Controller, instructions, registers, ALU, bus interface and memory access, I/O ports. Interrupt and DMA. Single chip microcontrollers. Peripheral circuits for microprocessors - parallel and serial ports, counters/timers, integrated ADC and DAC. *

8. Selected standard computer interfaces Parallel interface - EPP. Serial interface - %RS232, modem, null modem. Fast interfaces - USB, network adapters, FireWire. *

9. Tutorial of process control Open and close control loops. Set-point, measured variable, controller action. Dynamic characteristics of control loop, step function response, traffic delay. Continuous and discreet controllers. Proportional, integral, derivative and extremal controllers and their combinations.

Annotation

Introduction to data acquisition and control of physical experiments and technological processes. Analog filters.

Process controller basics. D/A and A/D converters.

Digital circuits and their characteristics. Introduction to microprocessor technology.

Computer standards for connection of external devices.