Elementární úvod do vektorového počtu, věta o potenciálu, Greenova a Gaussova věta. Vnější algebra vektorového prostoru, vlastnosti vnějšího násobení, orientace.
Diferenciální formy na otevřených množinách, vnější diferenciál, formy v dimenzi 3.
Přenášení diferenciálních forem pomocí zobrazení, integrační obory.
Stokesova věta pro formy stupně k, Gaussova věta pro oblast s hladkou hranicí.
Regulární a zobecněné plochy, orientace, Stokesova věta pro zobecněné formy. Integrál 1. druhu z funkce přes zobecněnou plochu.
Plochy v R3, 1. fundamentální forma plochy, tečný a normálový prostor plochy. 2. fundamentální forma plochy, normálová, Gaussova a střední křivost.
Hlavní a asymptotické křivky, Gaussovo zobrazení, Christoffelovy symboly.
Geodetická křivost, geodetiky, rovnice pro geodetiky.
Riemannova metrika, modely hyperbolické geometrie.
Povinně volitelný kurs pro programy OM a MO. Úvodní seznámení s diferenciálními formami, Stokesovou větou a geometrií ploch.