Charles Explorer logo
🇬🇧

Theory of Real Functions 1

Class at Faculty of Mathematics and Physics |
NMMA403

Syllabus

1. Differentiation of measures

- covering theorems (Vitali, Besikovich, perhaps also Whitney)

- maximal operator

- application to absolutely continuous functions and to functions of bounded variation

- mutual differentiation of two Radon measures

- Lebesgue points of locally integrable functions

- Rademacher theorem, relationship of Lipschitz functions and W^{1,\infty} 2. Hausdorff measure and dimension

- outer Hausdorff measure

- Hausdorff measure

- Hausdorff dimension

- connections to Lebesgue measure

- area formula (without a proof)

Annotation

Mandatory course for the master study branch Mathematical analysis. Recommended for the first year of master studies. Content: differentiation of measures, absolutely continuous functions, fuctions of bounded variation,

Lipschitz function, Hausdorff measure and dimension.