Charles Explorer logo
🇨🇿

Parciální diferenciální rovnice 1

Předmět na Matematicko-fyzikální fakulta |
NMMA405

Sylabus

Obecný pojem slabého řešení

Sobolevovy prostory: definice a přehled základních vlastností, věty o vnoření, věty o stopách

Slabá řešení lineární eliptické rovnice na omezené oblasti, různé okrajové podmínky, řešení pomocí Rieszovy věty o reprezentaci a pomocí Lax-Milgramovy lemmy, kompaktnost řešícího operátoru, vlastní vektory a vlastní čísla řešícího operátoru, Fredholmova alternativa a její aplikace, princip maxima pro slabé řešení, $W^{2,2}$ regularita, vyšší regularita, symetrický operátor: ekvivalence úlohy s minimalizací kvadratického funkcionálu

Bochnerovy prostory: definice a přehled základních vlastností, vnoření, itegrace per partes

Slabá řešení pro lineární parabolické rovnice, různé okrajové podmínky, konstrukce řešení pomocí Galerkinovy aproximace, jednoznačnost a regularita řešení.

Slabá řešení pro lineární hyperbolické rovnice, různé okrajové podmínky, konstrukce řešení pomocí Galerkinovy aproximace, jednoznačnost řešení, konečná rychlost šíření informace.

Anotace

Jedná se o základní přednášku z teorie parciálních diferenciálních rovnic, ve které se studenti seznámí s pojmem slabého (distributivního) řešení, souvisejícími prostory funkcí a teorií pro lineární rovnice.