Continuing the lecture NDIR042, after presentation of auxiliary tools from theory of Bochner spaces of Banach-space valued functions and Aubin-Lions' theorem, it will have analogous structure as the lecture mentioned. Hovewer, beside Galerkin's method, also Rothe's method of semidiscretization in time is presented.
Abstract initial-value or periodic problems are applied to initial- (or periodic) boundary-value problems for concrete quasi- or semi-linear parabolic partial differential equations or inequalities. So-called doubly nonlinear problems (i.e. time derivative is involved in a nonlinear manner) are addressed, too.
Pseudomonotone and monotone operators, set-valued mappings and applications to nonlinear parabolic partial differential equations and inequalities.