* I. MECHANICS *
1. Kinematics. Parametric description of motion, velocity, acceleration, decomposition of acceleration into tangential and normal component. Basic types of motion. *
2. Dynamics of a point mass. Newton's laws. Force acting at known types of motion. Equation of motion for a point mass, throws, harmonic motion. Inertial and non-inertial systems of coordinates, apparent forces, Coriolis' and centrifugal force. *
3. Energy and motion in a force field. Work, power, kinetic energy. Conservative force, central force, linear harmonic oscillator, potential energy. Non-conservative forces, friction. Gravitational law. Motion in a gravitational field, Kepler's laws. *
4. Systems of point-masses and rigid body. Description of point mass system, degrees of freedom. Rigid body kinematics. Momentum and angular momentum theorems - first and second impulse theorem. Momentum and angular momentum conservation theorems. Energy of a point-mass system, Koenig's theorem. Reduction of system of forces acting on a rigid body. *
5. Rotation of rigid body. Rotation about a fixed axis, equation of motion, moment of inertia. Heavy pulley, pendulum, rolling. Steiner's theorem. Kinetic energy of a rotating body. Moment of inertia tensor and rotation around a fixed point (outline). *
6. Oscillations and waves. Oscillations damped, forced, composition of vibrations, coupled oscillators, aperiodic damped motion, resonance. Concept of the wave, wave equation, plane wave. Energy and intensity of waves. Harmonic wave, its description, the wavelength - velocity - frequency relations. Phase velocity and group velocity. Types of waves, polarization. Superposition principle, interference of waves, standing waves. Huygens' principle, refraction, reflection, Doppler effect. *
7. Continuum - general concepts. Continuum kinematics. Stress tensor, strain tensor, strain rate tensor. Equation of equilibrium and equation of motion for continuum. *
8. Elasticity. Generalized Hook's law. Fundamental problem of elasticity theory. Extension, shear, torsion, bending. *
9. Mechanics of fluids. Liquid and gas. Equilibrium of fluids, hydrostatic pressure, Pascal's law, barometric formula. Archimedes' law. Continuity equation, ideal fluid flow, Bernoulli's equation. Newton's law of viscosity, viscous liquid flow, Poiseuille's equation. Laminar and turbulent flows. * II. MOLECULAR PHYSICS. *
1. Basics of thermodynamics. Thermodynamic system and its equilibrium. Heat, temperature, heat capacity. The first law of thermodynamics, internal energy of an ideal gas. Equation of state of an ideal gas. Reversible and irreversible processes, Carnot cycle, thermodynamic temperature. The second law of thermodynamics, entropy. Third law of thermodynamics. *
2. Molecular-kinetic theory of matter. Basics of a statistical description. Pressure and temperature, Boltzmann's law and entropy. Maxwell-Boltzmann distribution. Mean free path, collision frequency, Brownian motion. Diffusion, thermal conductivity, internal friction. *
3. Real gases and phase transitions. Equation of state of real gases. Joule-Thomson effect. Equilibrium phase diagram of one-component systems, Gibbs' phase rule. Latent heats and temperatures of phase transitions. *
4. Molecular phenomena in liquids. Surface tension. Young-Laplace equation.
Kinematics and dynamics of mass points. Systems of mass points and rigid body mechanics. Oscillations and waves.
Introduction to continuum mechanics. Introduction to thermodynamics. Molecular kinetic theory of bodies.
The lecture is an introductory course for students of general physics.