Charles Explorer logo
🇨🇿

Matematika pro fyziky I

Předmět na Matematicko-fyzikální fakulta |
NOFY161

Sylabus

* 1. Posloupnosti a řady funkcí

Bodová a stejnoměrná konvergence. Weierstrassovo kritérium, Abelovo, Dirichletovo a Leibnizovo kritérium.Limita a spojitost, záměna limit, záměna limity a součtu řady, záměna limity a derivace, sumy a derivace, neurčitého integrálu a limity (sumy), určitého integrálu a limity (sumy). Abelova věta o konvergenční kružnici u mocninných řad.

* 2. Vícerozměrný integrál

Elementy teorie míry, vnější míra, míra, měřitelné množiny a jejich vlastnosti, Lebesgueova míra a její vlastnosti, pojem "skoro všude". Měřitelné funkce a operace s nimi. Lebesgueův integrál a jeho základní vlastnosti. Fubiniho věta a věta o substituci, regulární substituce. Věty o limitních přechodech: Leviho, Lebesgueova, Fatouova, integrabilní majoranty. Integrály s parametrem, limita, spojitost a derivování podle parametru.

* 3 Lebesgueovy prostory

Definice, norma, základní vlastnosti. Husté podmnožiny. Aproximace pomocí zhlazení regularizátorem.

* 3. Křivkový integrál

Křivka, jednoduchá křivka, uzavřená křivka. Tečný a normálový vektor. Křivkový integrál 1. a 2. druhu, souvislost obou integrálů, nezávislost na parametrizaci. Potenciál vektorového pole. Výpočet integrálu druhého druhu pomocí potenciálu. Nulová rotace a souvislost s existencí potenciálu.

* 4. Plošný integrál 2D plocha v dimenzi 3 a její normálový vektor. Plošný integrál 1. druhu a jeho interpretace. Orientovaná plocha, spojité pole jednotkových normál. Plošný integrál 2. druhu. Souvislost mezi integrálem 1. a 2. druhu. Grammův determinant a různá zadání plochy. Gauss-Ostrogradského věta, věta o divergenci, integrální reprezentace divergence, Greenovy formule. Stokesova věta, integrální interpretace rotace. Poznámky o plošném integrálu v dimenzi n.

* 5. Fourierovy řady

Fourierovy koeficienty a Fourierova trigonometrická řada. Riemann-Lebesgueovo lemma a jeho důsledky. Riemannova věta o lokalizaci. Dirichletovo integrální jádro. Fourierovy řady pro dostatečně hladké funkce. Besselova nerovnost a Parsevalova rovnost pro L2 funkce. Derivování a integrování Fourierových řad člen po členu. Abstraktní Fourierovy řady: Hilbertův prostor, ortogonální systém, Fourierovy řady v Hilbertových prostorech, separabilní Hilbertův prostor, ekvivalence separability a existence úplné ortonormální báze, abstraktní Besselova nerovnost a Parsevalova rovnost, souvislost s úplností OG systému. Různé ortogonální systémy, aplikace: prostory s vahami, souvislost ortogonálních systémů s vlastními funkcemi diferenciálních operátorů. Ortogonální systémy polynomů: Legendreovy, Laguerrovy, Hermiteovy, Čebyševovy apod.

Anotace

Základní přednáška z matematiky pro 2. ročník fyziky navazující na Matematickou analýzu (I + II), kódy

NOFY151, NOFY152 a Lineární algebru (I+II) , kódy NOFY141, NOFY142.