* Základy teorie konečných a Lieových grup
Grupy a jejich podgrupy (základní vlastnosti a tvrzení), homomorfizmus a izomorfizmus grup, působení grupy na množině, Lieova grupa a její Lieova algebra (geometrický a maticový přístup), jednoparametrické podgrupy Lieovy grupy a exponenciální zobrazení, přehled základních maticových grup a jejich vlastností (dvojnásobné pokrytí grupy SO(3) grupou SU(2)).
* Základy teorie reprezentací grup
Reprezentace jako působení grup na lineárních prostorech, invariantní podprostory, ekvivalentní, unitární, ireducibilní a (úplně) reducibilní reprezentace a základní tvrzení o nich, především pro konečné a kompaktní Lieovy grupy (Schurova lemmata, relace ortogonality, charaktery a jejich vlastnosti, Peterův-Weylův teorém, Casimirovy operátory, Racahův teorém), základní přehled výsledků teorie reprezentací symetrické grupy a grupy SU(n).
* Aplikace v kvantové teorii
Klasifikace vlastních čísel a vlastních funkcí operátoru podle ireducibilních reprezentací grupy symetrie tohoto operátoru, systémy složené z podsystémů a rozklad reducibilních reprezentací (Clebschovy-Gordanovy rozvoje a koeficienty), výpočet maticových elementů pomocí metod teorie reprezentací grup (ireducibilní tenzorové operátory a obecný Wignerův-Eckartův teorém, výběrová pravidla).
Během přednášky a zvláště na cvičeních budou výše uvedená témata ilustrována jednak na bodových grupách, které popisují symetrie molekul a krystalů a jejichž reprezentace hrají důležitou roli v kvantové chemii, molekulární spektroskopii a teorii pevných látek, a jednak na vybraných Lieových grupách důležitých v atomové, jaderné a částicové fyzice jako jsou grupy SO(3), SU(2) či SU(3).
Nepředpokládá se předchozí znalost grup, jen základy lineární algebry. Vzhledem k hojnému výskytu příkladů z kvantové mechaniky se též předpokládá základní znalost této teorie.
Na přednášce se studenti seznámí se základními pojmy a výsledky teorie grup a jejich reprezentací jak pro konečné, tak pro spojité Lieovy grupy. Na cvičení si vyzkouší jejich použití v konkrétních fyzikálních situacích.
Vhodné pro 1. a 2. roč. navazujícího magisterského studia TF, JSF a MOD.