Charles Explorer logo
🇨🇿

Teorie množin

Předmět na Pedagogická fakulta |
O02310041

Sylabus

Obsah kursu:

* Antinomie Cantorovy intuitivní teorie množin.

Porovnávání množin. Ekvivalentní (stejně mohutné) množiny. Konečné a nekonečné množiny. Princip inkluze a exkluze pro konečné množiny a jeho aplikace (Eulerova číselně teoretická funkce). Konstrukční a existenční důkazy ekvivalentnosti dvou nekonečných množin. Množiny různých mohutností. Porovnání mohutnosti množiny A s mohutností její potenční množiny P(A) (Cantorova věta).

Spočetné a nespočetné množiny. Sjednocení a kartézský součin dvou spočetných množin; důkaz jejich spočetnosti. Sjednocení a kartézský součin spočetně mnoha spočetných množin; otázka jejich spočetnosti či nespočetnosti. Nespočetné množiny a množiny mohutnosti kontinua. Nespočetnost množiny reálných čísel R. Nespočetnost množiny všech nekonečných posloupností čísel z N. Množiny mohutnosti kontinua a větší mohutnosti.

Cantorovo diskontinuum (CD). Nespočetnost CD. Ekvivalence CD a množiny reálných čísel R. Ekvivalence úsečky se čtvercem a s krychlí. Využití CD ke konstrukci spojitého zobrazení úsečky na čtverec (Peanova křivka).

Kardinální čísla. Definice. Sčítání, násobení a umocňování kardinálních čísel. Porovnání aritmetiky kardinálních čísel konečných a nekonečných množin. Alefy (?0, ?1, ..). Hypothesa kontinua.

Uspořádání a dobré uspořádání. Definice. Vlastnosti podobných (dobře) uspořádaných množin (obraz prvního a posledního prvku, apod.) Základní věta o dobře uspořádaných množinách. Porovnání dvou dobře uspořádaných množin. Ordinální čísla. Definice a početní operace. Porovnání aritmetiky ordinálních čísel konečných a nekonečných dobře uspořádaných množin. Porovnání s aritmetikou kardinálních čísel. Limitní ordinální čísla. Princip transfinitní indukce.

Zermelův axiom a Zermelova věta. Selektor. Věta o existenci dobrého uspořádání libovolné množiny. Důsledky. Hamelova base, její užití k řešení rovnice). Existence spočetné podmnožiny libovolné nekonečné množiny.

Anotace

Základy teorie množin. Mohutnost množiny, spočetné a nespočetné množiny.

Kardinální a ordinální čísla, Zermelův axióm a jeho důsledky. Cantorovo diskontinuum a jeho vlastnosti.

Peanova křivka.