ELEMENTY DIFERENCIÁLNÍCH ROVNIC
ČÍSELNÉ SOUSTAVY
· desítková, dvojková a šestnáctková soustava, základní operace a převody
ZÁKLADY LOGIKY A TEORIE MNOŽIN
· množina, Vennovy diagramy, výroky a výrokové formy, pojem formule, pravdivostní hodnota, ekvivalence formulí, operace s množinami, vztahy mezi množinami, relace
LINEÁRNÍ ALGEBRA
· matice, prvky matice, čtvercová matice, transponovaná matice, hlavní diagonála, řádkové a sloupcové vektory, hodnost matice, determinant, Sarrusovo pravidlo, soustavy lineárních rovnic, Cramerovo pravidlo
VEKTOROVÁ ALGEBRA
· základní pojmy, operace s vektory, skalární součin dvou vektorů, vektorový součin dvou vektorů
ANALYTICKÁ GEOMETRIE V ROVINĚ
· soustava souřadnic v rovině, parametrické vyjádření přímky, obecná rovnice přímky, směrnicový tvar rovnice přímky, vzájemná poloha přímek, odchylka přímek, vzdálenost bodu od přímky
ANALYTICKÁ GEOMETRIE V PROSTORU
· soustava souřadnic v prostoru, parametrické vyjádření přímky a roviny v prostoru, obecná rovnice roviny, vzájemná poloha bodů, přímek a rovin, vzdálenosti a odchylky
KUŽELOSEČKY
· kružnice, eleipsa, hyperbola, parabola
Posláním studijního předmětu propedeutického charakteru Matematika je zlepšit připravenost studentů ke studiu předmětů aprobace. Předmět zahrnuje ta témata, která představují základnu pro další studium předmětů, návazně např. studijních předmětů Algoritmizace a programování.
Některá témata jsou zařazena pro sjednocení znalostí středoškolské matematiky studentů přicházejících z různých typů škol. Cílem studijního předmětu Matematika I a navazujícího Matematika II je vybavit studenty příslušnými vědomostmi a kompetencemi z oblastí logiky, číselných soustav, množin a analýzy a naučit je využívat matematické znalosti v technické praxi.