Charles Explorer logo
🇨🇿

On the steady solutions to a model of compressible heat conducting fluid in two space dimensions

Publikace na Matematicko-fyzikální fakulta |
2011

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

We consider steady compressible Navier--Stokes--Fourier system in a bounded two-dimensional domain with the pressure law $p(\vr,\vt) \sim \vr \vt + \vr \ln^\alpha (1+\vr)$. For the heat flux $\vc{q} \sim -(1+\vt^m) \nabla \vt$ we show the existence of a weak solution provided $\alpha > \max \{1, 1/m\}$, $m>0$.