We discuss stress relaxation and creep experiments of fluids that are generalizations of the model due to Burgers by allowing the material moduli such as the viscosities and relaxation and retardation times to depend on the stress. The physical problem, which is cast within the context of one dimension, leads to an ordinary differential equation that involves nonlinear terms like product of a function with a jump discontinuity and the derivative of a function with a jump discontinuity.
As the equations are nonlinear, standard techniques that are used to study problems concerning linear viscoelastic fluids such as Laplace transforms and the theory of distributions are not applicable. We find it necessary to seek the solution in a more general setting.
We show that the solution to the governing equation can be found in the sense of the generalized functions introduced by Colombeau.