Charles Explorer logo
🇨🇿

Fatigue endurance of Ti-6Al-4V alloy with electro-eroded surface forimproved bone in-growth

Publikace na Matematicko-fyzikální fakulta |
2011

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

Ti-6Al-4V hour-glass shaped rotating beam specimens with duplex microstructure were processed by electric discharge machining (EDM). A comparatively high peak current of 29A was utilized in order to increase surface roughness for improved osteointegration.

High cycle fatigue (HCF) tests were performed in rotating beam loading (R = -1) on these EDM specimens and results were compared with electrolytically polished specimens serving as reference. As expected, the HCF performance of EDM specimens was inferior to the electrolytically polished specimens.

A detailed study of fatigue crack nucleation and microcrack growth was carried out on failed specimens by SEM. The poor HCF strength of EDM specimens is explained by early crack nucleation due to the high notch sensitivity of Ti-6Al-4V.

In addition, process-induced residual tensile stresses and microstructural effects may also account for the drastic loss in HCF performance relative to the electropolished baseline. (C) 2010 Elsevier Ltd. All rights reserved.