In this work, we present first results on noun phrase coreference resolution on Czech data. As the data resource for our experiments, we employed yet unfinished and unpublished extension of Prague Dependency Treebank 2.0, which captures noun phrase coreference and bridging relations.
Incompleteness of the data influenced one of our motivations – to aid annotators with automatic pre-annotation of the data. Although we introduced several novel tree features and tried different machine learning approaches, results on a growing amount of data shows that the selected feature set and learning methods are not able to sufficiently exploit the data.