Charles Explorer logo
🇬🇧

Evolution of the B7 family: co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7's historical relationship with the MHC

Publication at Faculty of Science |
2012

Abstract

The B7 family of genes is essential in the regulation of the adaptive immune system. Most B7 family members contain both variable (V)- and constant (C)-type domains of the immunoglobulin superfamily (IgSF).

Through in silico screening of the Xenopus genome and subsequent phylogenetic analysis, we found novel genes belonging to the B7 family, one of which is the recently discovered B7H6. Humans and rats have a single B7H6 gene; however, many B7H6 genes were detected in a single large cluster in the Xenopus genome.

The B7H6 expression patterns also varied in a species-specific manner. Human B7H6 binds to the activating natural killer receptor, NKp30.

While the NKp30 gene is single-copy and maps to the MHC in most vertebrates, many Xenopus NKp30 genes were found in a cluster on a separate chromosome that does not harbor the MHC. Indeed, in all species so far analyzed from sharks to mammals, the number of NKp30 and B7H6 genes correlates well, suggestive of receptor-ligand co-evolution.

Furthermore, we identified a Xenopus-specific B7 homolog (B7HXen) and revealed its close linkage to B2M, which we have demonstrated previously to have been originally encoded in the MHC. Thus, our study provides further proof that the B7 precursor was included in the proto MHC.

Additionally, the comparative analysis revealed a new B7 family member, B7H7, which was previously designated in the literature as an unknown gene, HHLA2.