Nanocomposite metal/plasma polymer films have been prepared by simultaneous plasma polymerization using a mixture of Ar/n-hexane and metal cluster beams. A simple compact cluster gas aggregation source is described and characterized with emphasis on the determination of the amount of charged clusters and their size distribution.
It is shown that the fraction of neutral, positively and negatively charged nanoclusters leaving the gas aggregation source is largely influenced by used operational conditions. In addition, it is demonstrated that a large portion of Ag clusters is positively charged, especially when higher currents are used for their production.
Deposition of nanocomposite Ag/C:H plasma polymer films is described in detail by means of cluster gas aggregation source. Basic characterization of the films is performed using transmission electron microscopy, ultraviolet-visible and Fourier-transform infrared spectroscopies.
It is shown that the morphology, structure and optical properties of such prepared nanocomposites differ significantly from the ones fabricated by means of magnetron sputtering of Ag target in Ar/n-hexane mixture.