Charles Explorer logo
🇨🇿

Combining Parameter Space Search and Meta-learning for Data-Dependent Computational Agent Recommendation

Publikace na Matematicko-fyzikální fakulta |
2012

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

The goal of our data-mining multi-agent system is to facilitate data-mining experiments without the necessary knowledge of the most suitable machine learning method and its parameters to the data. In order to replace the expert's knowledge, the meta-learning subsystems are proposed including the parameter-space search and method recommendation based on previous experiments.

In this paper we show the results of the parameter-space search with several search algorithms - tabulation, random search, simmulated annealing, and genetic algorithm.