The focus of this study was to compare the role of nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) in the regeneration of experimental skin and cartilage trauma. The role of VEGF in this process is known since decade; the NGF participation on this process has been first discussed within the spinal cord injury repair.
We hypothesized that both VEGF and NGF induce angiogenesis and take part on the repair process. The angiogenesis response and the cartilage regeneration after phVEGF(165) plasmid and rat pcNGF plasmid administration were investigated using BALB/c mice.
PhVEGF(165) and pcNFG were injected into the right mice ear and plain vector injection into the left ear the day before trauma. The next day, all mice were ear-punched, resulting in 2-mm diameter puncture through the center of both pinnae.
In BALB/c mouse strain, a significantly faster cartilage repair was observed after phVEGF(165) and pcNGF injection into punched ear area in comparison to the control group. It has been shown that the healing process is after VEGF and NGF injection driven differentially.
In case of VEGF is the cartilage wound repaired by induction of new chondrocytes differentiation. In the case of NGF, the regeneration is supported by immature leukocytes attracted into the punched area.
The leukocytes induct angiogenesis so far indirectly by inflammation. The NGF-induced inflammation environment may be a part of mosaic creating the complete picture of regeneration.