Charles Explorer logo
🇨🇿

Luminescent Sensor for Carbonate Ion Based on Lanthanide(III) Complexes of 1,4,7,10-Tetraazacyclododecane-1,4,7-Triacetic Acid (DO3A)

Publikace na Přírodovědecká fakulta |
2013

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

Lanthanide(III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (H(3)DO3A) are suggested as sensors for sensitive luminescence-based determination of a carbonate anion. Thermodynamic study of association of [Eu(H2O)(2)(DO3A)] with bidentate anionic ligands using luminescence spectroscopy reveals an affinity order CO3(2-) > oxalate(2-) > picolinate(-) > phthalate(2-) ~ citrate(3-); presumably as a consequence of an increasing chelate ring size.

The ternary [Eu(DO3A)(picolinate)](-) and [Tb(DO3A)(picolinate)](-) complexes show improved photophysical properties due to the antenna effect of the picolinate anion. High quenching effect of carbonate anion and, to a lesser extent also oxalate, enables construction of a linear calibration plot utilizing optimized experimental conditions (e.g. c(LnL) = 0.1 mM, c(picolinate) = 2-5 mM, pH = 7.4, λ(exc) = 286 nm, etc.) for carbonate determination in solution.

Both sensors show a comparable sensitivity and the detection limit of about 0.4 mM. In order to improve the photophysical properties of Ln(III) sensor by shift of excitation wavelength about 40 nm to VIS range, the isoquinoline-3-carboxylic acid (IQCA) as antenna ligand was employed instead of picolinic acid.

The analysis of commercial samples of European mineral waters was carried out and they were compared to the results obtained by capillary isotachophoresis to confirm there is no inherent (systematic) error to the present analysis. The Ln(III) sensor with IQCA is recommended since it has a better robustness than that with picolinate.

The present analytical method is simple and rapid, and it is useful for sensitive determination of bicarbonate/carbonate concentration in water samples under aerobic conditions.