Charles Explorer logo
🇨🇿

On bases in Banach spaces

Publikace na Matematicko-fyzikální fakulta |
2005

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

We investigate various kinds of bases in infinite dimensional Banach spaces. In particular, we consider the complexity of Hamel bases in separable and non-separable Banach spaces and show that in a separable Banach space a Hamel basis cannot be analytic, whereas there are non-separable Hilbert spaces which have a discrete and closed Hamel basis.

Further we investigate the existence of certain complete minimal systems in $l^\infty$ as well as in separable Banach spaces.