Charles Explorer logo
🇨🇿

Deconstructibility and the Hill Lemma in Grothendieck categories

Publikace na Matematicko-fyzikální fakulta |
2013

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

A full subcategory of a Grothendieck category is called deconstructible if it consists of all transfinite extensions of some set of objects. This concept provides a handy framework for structure theory and construction of approximations for subcategories of Grothendieck categories.

It also allows to construct model structures and t-structures on categories of complexes over a Grothendieck category. In this paper we aim to establish fundamental results on deconstructible classes and outline how to apply these in the areas mentioned above.

This is related to recent work of Gillespie, Enochs, Estrada, Guil Asensio, Murfet, Neeman, Prest, Trlifaj and others.