Charles Explorer logo
🇨🇿

Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central d plus Au Collisions at root s(NN)=200 GeV

Publikace na Matematicko-fyzikální fakulta |
2013

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in d + Au collisions at root s(NN) = 200 GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central p + Pb collisions at root s(NN) = 5.02 TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs.

The origin of these anisotropies is currently unknown. Various competing explanations include parton saturation and hydrodynamic flow.

We observe qualitatively similar, but larger, anisotropies in d + Au collisions at RHIC compared to those seen in p + Pb collisions at the LHC. The larger extracted upsilon(2) values in d + Au are consistent with expectations from hydrodynamic calculations owing to the larger expected initial-state eccentricity compared with that from p + Pb collisions.

When both are divided by an estimate of the initial-state eccentricity the scaled anisotropies follow a common trend with multiplicity that may extend to heavy ion data at RHIC and the LHC, where the anisotropies are widely thought to arise from hydrodynamic flow.