Spontaneous depolarization similar to that from the sinus node was documented from the myocardial sleeves of pulmonary veins (PV) after isolation procedures. It was then hypothesized that sinus node-like tissue is present in the PVs of humans.
Based on a number of features, the myocardium of myocardial sleeves (MS) is highly arrhythmogenic. Membrane potentials originating from MS are invariably recordable at the PVs ostia in patients with atrial fibrillation (AF) and delayed conduction around the PVs ostia may play a role in re-entry process responsible for the initiation and maintenance of AF.
Diagnostic and therapeutic evidence of premature atrial beats induced in MS of PVs and resulting in launch of AF was detected by 3D electroanatomic method of monophasic action potential (MAP). MAP recording plays an important role in a direct view of human myocardial electrophysiology under both physiological and pathological conditions.
Its crucial importance lies in the fact that it enables the study of the action potential of myocardial cell in vivo and, therefore, the study of the dynamic relation of this potential with all the organism variables. The knowledge of pathological MAPs from PV myocardial sleeves can help us to confirm a diagnosis when finding the similar action potential morphology.
MAP can be also used to evaluate the therapeutic efficiency of vagal nerves suppression, radiofrequency ablation or other treatment procedures in PVs myocardial sleeves as well as for post-treatment following up.