Streptomycetes have been studied mostly as producers of secondary metabolites, while the transition from dormant spores to an exponentially growing culture has largely been ignored. Here, we focus on a comparative analysis of fluorescently and radioactively labeled proteome and microarray acquired transcriptome expressed during the germination of Streptomyces coelicolor.
The time-dynamics is considered, starting from dormant spores through 5.5 hours of growth with 13 time points. Time series of the gene expressions were analyzed using correlation, principal components analysis and an analysis of coding genes utilization.
Principal component analysis was used to identify principal kinetic trends in gene expression and the corresponding genes driving S. coelicolor germination. In contrast with the correlation analysis, global trends in the gene/protein expression reflected by the first principal components showed that the prominent patterns in both the protein and the mRNA domains are surprisingly well correlated.
Analysis of the number of expressed genes identified functional groups activated during different time intervals of the germination.