Charles Explorer logo
🇬🇧

Homomorphism-homogeneous L-colored graphs

Publication at Faculty of Mathematics and Physics |
2014

Abstract

A relational structure is homomorphism-homogeneous (HH-homogeneous for short) if every homomorphism between finite induced substructures of the structure can be extended to a homomorphism over the whole domain of the structure. Similarly, a structure is monomorphism-homogeneous (MH-homogeneous for short) if every monomorphism between finite induced substructures of the structure can be extended to a homomorphism over the whole domain of the structure.

In this paper we consider L-colored graphs, that is, undirected graphs without loops where sets of colors selected from L are assigned to vertices and edges. A full classification of finite MH-homogeneous L-colored graphs where L is a chain is provided, and we show that the classes MH and HH coincide.

When L is a diamond, that is, a set of pairwise incomparable elements enriched with a greatest and a least element, the situation turns out to be much more involved. We show that in the general case the classes MH and HH do not coincide.