U–Mo alloys are the most promising materials fulfilling the requirements of using low enriched uranium (LEU) fuel in research reactors. From a fundamental standpoint, it is of interest to determine the basic thermodynamic properties of the cubic γ-phase U–Mo alloys.
We focus our attention on the use of Mo doping together with ultrafast cooling (with high cooling rates ≥106 K s−1), which helps to maintain the cubic γ-phase in U–Mo system to low temperatures and on determination of the low-temperature properties of these γ-U alloys. Using a splat cooling method it has been possible to maintain some fraction of the high-temperature γ-phase at room temperature in pure uranium.
U-13 at.% Mo splat clearly exhibits the pure γ-phase structure. All the splats become superconducting with Tc in the range from 1.24 K (pure U splat) to 2.11 K (U-15 at.% Mo).
The γ-phase in U–Mo alloys undergoes eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and tetragonal γ'-phase upon annealing at 500 °C, while annealing at 800 °C has stabilized the initial γ phase. The α-U easily absorbs a large amount of hydrogen (UH3 hydride), while the cubic bcc phase does not absorb any detectable amount of hydrogen at pressures below 1 bar and at room temperature.
At 80 bar, the U-15 at.% Mo splat becomes powder consisting of elongated particles of 1–2 mm, revealing amorphous state.