A recently proposed step-by-step procedure, to merge the low-energy physics of the pi-bonds electrons of graphene, and quantum field theory on curved spacetimes, is recalled. The last step there is the proposal of an experiment to test a Hawking-Unruh effect, emerging from the model, that manifests itself as an exact (within the model) prediction for the electronic local density of states, in the ideal case of the graphene membrane shaped as a Beltrami pseudosphere.
A discussion about one particular attempt to experimentally test the model on molecular graphene is presented, and it is taken as an excuse to solve some basic issues that will help future experiments. In particular, it is stated that the effect should be visible on generic surfaces of constant negative Gaussian curvature, that are infinite in number.