To characterize the time frame of changes in pulmonary arterial pressure, right ventricular hypertrophy and morphology of small pulmonary arteries male Wistar rats were exposed to isobaric hypoxia (3 weeks, F1O2 0.1) and then let to recover on air for 1 or 5 weeks. Normoxic animals (group N) served as controls.
Mean pulmonary arterial pressure (PAP), ratio of the weight of the right heart ventricle to the sum of the weights of the left ventricle and septum (RV/LV+S) and percentage of double laminated pulmonary vessels ( % DL) were measured at the end of hypoxic exposure (group H), after 1 or 5 weeks of recovery (groups 1R and 5R), and in controls kept in air (group N). Three weeks in hypoxia resulted in increase in PAP, RV/LV+S and % DL.
After 1 week of recovery RV/LV+S normalized, PAP decreased, while % DL did not change. After 5 weeks in air PAP returned to control values and % DL diminished significantly but did not normalize.
Our results suggest that recovery depends on the degree of HPH and that knowledge of the time-frame of recovery is important for future studies in our rat model.