Forests play an important role in regulation of the global climate; moreover, they provide human beings with a whole range of ecosystem services. Forest health and ecosystem functioning have been influenced by anthropogenic activities and their consequences, such as air pollution, surface mining, heavy metal contamination, and other biotic and abiotic stress factors, which had an especially serious effect on central Europe.
Many aspects of the physiological state of trees are more or less related to the concentrations of two main groups of leaf photosynthetic pigments: chlorophylls and carotenoids. Therefore, their contents can be used as non-specific indicators of the actual tree physiological status, stress and the pre-visible tree damage.
Variations in leaf biochemical composition affect foliar optical properties and can be assessed remotely using high spectral resolution data (hyperspectral data). These data were successfully used in earlier studies to detect vegetation stress and damage.
However, only a few approaches have dealt with the use of hyperspectral remote sensing to assess vegetation physiological status on a regional scale. Moreover, little or no research has been done on assessing vegetation health while utilizing multi-date hyperspectral images.
In this study, the method for assessing forest health conditions using optical indices retrieved from hyperspectral data was applied to the two temporal HyMap date sets acquired in 07/2009 and 08/2010 to detect stress for the Norway spruce forests in Sokolov, NW Bohemia, a region affected by long-term extensive mining. The classification results were validated by ground truth data (total chlorophyll-Cab, carotenoids-Car and carotenoid to chlorophyll ratio-Car/Cab) and were associated with the geochemical conditions of the forest stands.