Hydrogen-induced elastic/plastic deformation was studied in V1-xFex (x = 0.02-0.08) films with thicknesses between 10 and 400 nm and prepared at different temperatures. The combination of several in situ techniques such as X-ray diffraction, acoustic emission, electromotive force and substrate curvature techniques allows sensitive studies of defects generated in these thin films As well as conventional out-of-plane linear elastic film expansion and in-plane compressive stress increase during hydrogen absorption, the investigations uncovered new details: as soon as hydrogen predominately solved in interstitial lattice sites, discrete stress relaxation (DSR) events were detected, after which the film continued to behave in a linear elastic manner.
DSRs were interpreted by uncorrelated movement of pre-existing dislocations. Particularly in the case of films deposited at higher temperatures, in-plane tensile stress was found at very small H concentrations of less than 0.005 H/V.
Upon further H uptake, this turned into compressive stress. However, this stress increase differed from theoretical predictions.
This behavior is explained by the generation of superabundant vacancies. Dislocation emission and plastic deformation are linked to the formation of the hydride phase in the V1-xFex films.