A search for squarks and gluinos in final states containing high-pT jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in root s = 8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb(-1).
Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino.
For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate ( single light-flavour) squarks. In mSUGRA/CMSSM models with tan beta = 30, A(0) = -2m(0) and mu > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV.
Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.