Charles Explorer logo
🇬🇧

Multilingual Dependency Parsing: Using Machine Translated Texts instead of Parallel Corpora

Publication at Faculty of Mathematics and Physics |
2014

Abstract

This paper revisits the projection-based approach to dependency grammar induction task. Traditional cross-lingual dependency induction tasks one way or the other, depend on the existence of bitexts or target language tools such as part-of-speech (POS) taggers to obtain reasonable parsing accuracy.

In this paper, we transfer dependency parsers using only approximate resources, i.e., machine translated bitexts instead of manually created bitexts. We do this by obtaining the the source side of the text from a machine translation (MT) system and then apply transfer approaches to induce parser for the target languages.

We further reduce the need for the availability of labeled target language resources by using unsupervised target tagger. We show that our approach consistently outperforms unsupervised parsers by a bigger margin (8.2% absolute), and results in similar performance when compared with delexicalized transfer parsers.