Charles Explorer logo
🇬🇧

STIM1-Directed Reorganization of Microtubules in Activated Mast Cells

Publication at Faculty of Science |
2011

Abstract

Activation of mast cells by aggregation of the high-affinity IgE receptors (Fc epsilon RI) initiates signaling events leading to the release of inflammatory and allergic mediators stored in cytoplasmic granules. A key role in this process play changes in concentrations of intracellular Ca(2+) controlled by store-operated Ca(2+) entry (SOCE).

Although microtubules are also involved in the process leading to degranulation, the molecular mechanisms that control microtubule rearrangement during activation are largely unknown. In this study, we report that activation of bone marrow-derived mast cells (BMMCs) induced by Fc epsilon RI aggregation or treatment with pervanadate or thapsigargin results in generation of protrusions containing microtubules (microtubule protrusions).

Formation of these protrusions depended on the influx of extracellular Ca(2+). Changes in cytosolic Ca(2+) concentration also affected microtubule plus-end dynamics detected by microtubule plus-end tracking protein EB1.

Experiments with knockdown or reexpression of STIM1, the key regulator of SOCE, confirmed the important role of STIM1 in the formation of microtubule protrusions. Although STIM1 in activated cells formed puncta associated with microtubules in protrusions, relocation of STIM1 to a close proximity of cell membrane was independent of growing microtubules.

In accordance with the inhibition of Ag-induced Ca(2+) response and decreased formation of microtubule protrusions in BMMCs with reduced STIM1, the cells also exhibited impaired chemotactic response to Ag. We propose that rearrangement of microtubules in activated mast cells depends on STIM1-induced SOCE, and that Ca(2+) plays an important role in the formation of microtubule protrusions in BMMCs.

The Journal of Immunology, 2011, 186: 913-923.