Charles Explorer logo
🇬🇧

Glycation of lens proteins in diabetes and its non-invasive assessment - first experience in the Czech Republic

Publication at First Faculty of Medicine |
2015

Abstract

Advanced glycation end-products (AGEs) play a crucial role in the pathogenesis of diabetes and its complications. Their accumulation in the lens reflects total glycation rate in the human body.

Recently, a new confocal biomicroscope ClearPath DS-120 quickly measuring lens autofluorescence (LAF) has been developed. Our pilot study included 69 patients with diabetes and 49 healthy controls, in all subject LAF was measured and compared with skin autofluorescence (SAF) assessed by AGE-Reader.

Both LAF (T1DM: 0,27 ? 0,09; T2DM: 0,22 ? 0,06; controls: 0,17 ? 0,04 AU; p < 0,0001) and SAF (T1DM: 2,0 ? 0,4; T2DM: 2,3 ? 0,6; controls: 1,8 ? 0,3 AU; p < 0,0001) was significantly higher in patients with diabetes. In all groups significant relationship between LAF and SAF was observed (T1DM: r = 0,53, p < 0,005, T2DM: r = 0,37, p < 0.05; controls: r = 0,30, p < 0,05).

On the contrary, LAF and SAF relationship with glycated hemoglobin (HbA1c) was rather poor, since HbA1c cannot wholly reflect long-term glycation process. Lens autofluorescence could be a robust marker of long-term diabetes control predicting future complication risks.

However, confirmation of such hypothesis will need other and long-term clinical studies.