We present a comprehensive study on optimization of wet preparation routes yielding well-crystalline spinel chromite, ACr(2)O(4) nanoparticles (A= Cu, Fe, Ni, Mn and Mg). The auto-combustion and co-precipitation methods in the presence of nitrate or chloride ions and under different atmospheres, followed by annealing of final products at different temperatures were tested.
All samples were characterized by powder X-ray diffraction (PXRD) and vibrational spectroscopy in order to evaluate their phase composition, particle size and micro-strain. Selected samples were subjected to investigation by transmission electron microscopy (TEM).
The degree of the particle crystallinity was estimated by relating the apparent crystallite size obtained from the PXRD analysis to the physical grain size observed by the TEM. Optimal conditions leading to single-phase and highly-crystalline chromite nanoparticles are proposed.