Charles Explorer logo
🇬🇧

Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity

Publication at Central Library of Charles University |
2010

Abstract

The soil actinobacteria Rhodococcus rhodochrous PA-34, Rhodococcus sp. NDB 1165 and Nocardia globerula NHB-2 grown in the presence of isobutyronitrile exhibited nitrilase activities towards benzonitrile (approx. 1.1-1.9 U mg(-1) dry cell weight).

The resting cell suspensions eliminated benzonitrile and the benzonitrile analogues chloroxynil (3,5-dichloro-4-hydroxybenzonitrile), bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodo-4-hydroxybenzonitrile) (0.5 mM each) from reaction mixtures at 30A degrees C and pH 8.0. The products were isolated and identified as the corresponding substituted benzoic acids.

The reaction rates decreased in the order benzonitrile a parts per thousand bromoxynil > ioxynil in all strains. Depending on the strain, 92-100, 70-90 and 30-51% of chloroxynil, bromoxynil and ioxynil, respectively, was hydrolyzed after 5 h.

After a 20-h incubation, almost full conversion of chloroxynil and bromoxynil was observed in all strains, while only about 60% of the added ioxynil was converted into carboxylic acid. The product of ioxynil was not metabolized any further, and those of the other two herbicides very slowly.

None of the nitrilase-producing strains hydrolyzed dichlobenil (2,6-dichlorobenzonitrile). 3,5-Dibromo-4-hydroxybenzoic acid exhibited less inhibitory effect than bromoxynil both on luminescent bacteria and germinating seeds of Lactuca sativa. 3,5-Diiodo-4-hydroxybenzoic acid only exhibited lower toxicity than ioxynil in the latter test.