Charles Explorer logo
🇬🇧

Legendrian Cycles and Curvatures

Publication at Faculty of Mathematics and Physics |
2015

Abstract

Properties of general Legendrian cycles acting in are studied. In particular, we give short proofs for certain uniqueness theorems with respect to the projections on the first and second component of such currents: In general, is determined by its restriction to the Gauss curvature form-this result goes back to J.

Fu-and in the full-dimensional case also by the restriction to the surface area form. As a tool a version of the Constancy theorem for Lipschitz submanifolds is shown.