The area of the city of Tsumeb in northern Namibia is strongly affected by gaseous emissions and by dust fallout from the local smelter. This is also reflected in increased concentrations of lead and arsenic in blood and urine of the residents.
Consequently, modeling of the dispersion of dust and SO2 emissions from the smelter was used in this study to delineate the contaminated area and to assess the health risks. The modeling results were verified by ground-based geochemical survey of soil and grass in the area.
The results of modeling revealed that the concentrations of SO2 in the Tsumeb town were relatively low, whereas the highest dust fallout concentrations were found around the Tsumeb smelter. The Tsumeb town residential area was less affected due to favorable landscape morphology between the smelter and the city (the Tsumeb Hills).
The results of modeling of dust fallout and geochemical survey coincided very well. Since the anthropogenic contamination was bound only to the surface layer of soil, the local soils were sampled at two depth horizons: topsoil and the deeper soil horizon.
This enabled us to distinguish between the anthropogenic contamination of soil surface from natural (geogenic) concentrations of studied metals in the deeper part of the soil profile. Concentrations of metals in grass correlated with the concentration of metals in topsoil.
In contrast to a good conformity with the modeling of dust fallout from the smelter and geochemical survey, the results of modeling of SO2 contents in the air, and total sulfur content in soils were different. Differences can be explained by additional sources of contamination, as for example a sulfate-rich dust fallout from local tailings ponds and slag dumps that were not considered in the SO2 dispersion model.