We report on the effects of prenatal alcohol exposure on resting-state brain activity as measured by magnetoencephalography (MEG). We studied 37 subjects diagnosed with fetal alcohol spectrum disorder in one of three categories: fetal alcohol syndrome, partial fetal alcohol syndrome, and alcohol-related neurodevelopmental disorder.
For each subject, the MEG signal was recorded for 60 s during rest while subjects lay supine. Using time series analysis, we calculated the synchronous neural interactions for all pair-wise combinations of 248 MEG sensors resulting in 30,628 partial correlations for each subject.
We found significant differences from control subjects in 6.19 % of the partial zero-lag crosscorrelations (synchronous neural interactions; Georgopoulos et al. in J Neural Eng 4:349-355, 2007), with these differences localized in the right posterior frontal, right parietal, and left parietal/posterior frontal regions. These results show that MEG can detect functional brain differences in the individuals affected by prenatal exposure to alcohol.
Furthermore, these differences may serve as a biomarker for future studies linking symptoms and signs to specific brain areas. This may lead to new insights into the neuropathology of fetal alcohol spectrum disorders.