The aim was to construct a composite structure for bone tissue substitute on the basis of a degradable composite of an organic nanofiber carrier and an inorganic matrix in 3D, and to achieve subsequent colonisation by differentiated human mesenchymal stem cells (hMSC) towards osteocytes. We developed an active bone tissue substitute using nanofiber technology for a polycaprolactone (PCL) scaffold with the addition of hydroxyapatite and the colonisation of both components with hMSC with the ability of differentiation towards osteocytes.
The constructed composition included the components necessary for bone healing (inorganic and cellular) and it also forms a spatially-oriented 3D structure. We used polycaprolactone Mw 70,000 with electrostatic spinning for the formation of nanofibers using a modified Nanospider (TM) method.
For the inorganic component we used orthophosphate-calcium silicate with a crystal size of 1-2 mm which the nanofiber membrane was coated with. Both components were connected together with a tissue adhesive based of fibrin glue.
Cultivated hMSC cells at a concentration of 1.2 x 10(4)/cm(2) were multiplied in vitro and then cultivated in the expansion medium. HMSC overgrew both the PCL membrane and the Si-CaP crystals.
After colonisation with cultivated cells, this composite 3D structure can serve as a three-dimensional bone tissue replacement.