Human immunodeficiency virus (HIV-1) infection can be currently controlled by combined antiretroviral therapy, but a sterilizing cure is not achievable as this therapy does not target persistent HIV-1 in latent reservoirs. Therefore, different latency reversal agents are intensively explored in various models.
We have previously observed that heme arginate, a drug approved for human use, reveals a strong synergism with PKC inducers in reactivation of the latent provirus. Heme is physiologically decomposed by heme oxygenases into 3 degradation products: iron (Fe2+), carbon monoxide (CO) and biliverdin which is further converted to bilirubin by biliverdin reductase.
In this paper, we have studied the effects of individual heme-degradation products on latent HIV-1 reactivation in ACH-2 cells harboring integrated HIV-1 provirus and in H12 clone of Jurkat cells harboring HIV-minivirus expressing EGFP. We employed addition of ascorbate to generate Fe2+, resulting in increased expression of both HIV-1 p24 Ag and EGFP in PMA-stimulated ACH-2 and H12 cells, respectively, as characterized on RNA and protein levels.
On the other hand, addition of a CO-donor or bilirubin decreased the p24 expression. The reactivation of latent HIV-1 by iron or heme arginate was inhibited by antioxidant N-acetyl cysteine, or by an iron chelator desferrioxamine, suggesting that the effects were mediated by iron-or heme-induced redox stress.
Finally, we demonstrated the stimulatory effects of heme arginate and PMA on HIV-1 expression in peripheral blood mononuclear cells of HIV-infected patients cultured ex vivo. These results may constitute a new direction in the latent HIV-1 reactivation and therapy.