Since sperm size and form do not necessarily provide information on internal sperm structures, novel sperm markers need to be found in order to conduct assisted reproductive therapies (ART) successfully. Currently, the priority of andrologists is not only to select those sperm able to fertilize the oocyte, but also a high quality of sperm that will guarantee a healthy embryo.
Evidence of this shows us the importance of studying sperm intensively on genetic and epigenetic levels, because these could probably be the cause of a percentage of infertility diagnosed as idiopathic. Thus, more attention is being paid to posttranslational modifications as the key for better understanding of the fertilization process and its impact on embryo and offspring.
Advances in the discovery of new sperm markers should go hand in hand with finding appropriate techniques for selecting the healthiest sperm, guaranteeing its non-invasiveness. To date, most sperm selection techniques can be harmful to sperm due to centrifugation or staining procedures.
Some methods, such as microfluidic techniques, sperm nanopurifications, and Raman spectroscopy, have the potential to make selection gentle to sperm, tracking small abnormalities undetected by methods currently used. The fact that live cells could be analyzed without harmful effects creates the expectation of using them routinely in ART.
In this review, we focus on the combination of sperm epigenetic status (modifications) as quality markers, with non-invasive sperm selection methods as novel approaches to improve ART outcomes.