Two new classes of antitubercular agents, namely 5-alkylsulfanyl-1-(3,5-dinitrophenyl)-1H-tetrazoles and 2-alkylsulfanyl-5-(3,5-dinitrophenyl)-1,3,4-oxadiazoles, and their structure-activity relationships are described. These compounds possessed excellent activity against Mycobacterium tuberculosis, including the clinically isolated multidrug (MDR) and extensively drug-resistant (XDR) strains, with no cross resistance with first or second-line anti-TB drugs.
The minimum inhibitory concentration (MIC) values of the most promising compounds reached 0.03 mu M. Furthermore, these compounds had a highly selective antimycobacterial effect because they were completely inactive against 4 gram positive and 4 gram negative bacteria and eight fungal strains and had low in vitro toxicity for four mammalian cell lines, including hepatic cell lines HepG2 and HuH7.
Although the structure-activity relationship study showed that the presence of two nitro groups is highly beneficial for antimycobacterial activity, the analogues with a trifluoromethyl group instead of one of the nitro groups maintained a high antimycobacterial activity, which indicates the possibility for further structural optimization of this class of antitubercular agents.