Charles Explorer logo
🇬🇧

Matrix eigenvalue method for free-oscillations modelling of spherical elastic bodies

Publication at Faculty of Mathematics and Physics |
2017

Abstract

Deformations and changes of the gravitational potential of pre-stressed self-gravitating elastic bodies caused by free oscillations are described by means of the momentum and Poisson equations and the constitutive relation. For spherically symmetric bodies, the equations and boundary conditions are transformed into ordinary differential equations of the second order by the spherical harmonic decomposition and further discretized by highly accurate pseudospectral difference schemes on Chebyshev grids; we pay special attention to the conditions at the centre of the models.

We thus obtain a series of matrix eigenvalue problems for eigenfrequencies and eigenfunctions of the free oscillations. Accuracy of the presented numerical approach is tested by means of the Rayleigh quotients calculated for the eigenfrequencies up to 500 mHz.

Both the modal frequencies and eigenfunctions are benchmarked against the output from the Mineos software package based on shooting methods. The presented technique is a promising alternative to widely used methods because it is stable and with a good capability up to high frequencies.