Single layer graphene (SLG) and two-dimensional (2-D) plasmonic Ag nanoparticle arrays assembled by chemisorption of ethanethiol (ET) molecules (AgNPs-ET) were employed as components of two types of hybrid systems designed for surface-enhanced Raman scattering (SERS) spectral probing of SLG localized in the vicinity of plasmonic NPs. Both hybrids were characterized by optical microscopy, transmission electron microscopy (TEM), surface plasmon extinction (SPE), and SERS microRaman spectral measurements at four excitation wavelengths spanning the 445-780 nm range.
SERS spectral probing of the glass/SLG/AgNPs-ET hybrid prepared by overdeposition of SLG on glass by the array of ET-modified Ag NPs has shown that the chemisorbed ET acts as an efficient molecular spacer between SLG and Ag NPs surface which, in turn, enabled to obtain SERS spectra of SLG unperturbed by doping or strain. TEM imaging and SERS spectral probing of the second hybrid prepared by overdeposition of AgNPs-ET array on glass by SLG revealed removal of the adsorbed ET molecules and annealing of Ag NPs during the SLG deposition.
The characteristics of the resulting glass/AgNPs/SLG hybrid system, namely (i) broad distribution of the annealed Ag NPs sizes and shapes, (ii) SPE curve covering the overall visible spectral region, (iii) absence of the ET spectral bands in SERS spectra, and (iv) fairly uniform SERS enhancement of the G and 2D mode of SLG in the 532-780 nm range in the straight sample geometry indicate that this hybrid can provide a suitable platform for investigation of the excitation wavelength dependence of combined SERS/GERS (graphene-enhanced Raman scattering) enhancement experienced by various molecular species brought into contact with SLG in this hybrid. Finally, weak optical effects attributed to increased reflectivity of SLG in the near field of Ag NPs arrays have been observed in the excitation wavelength dependence of the SERS spectra of both types of hybrid systems.